Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions.

نویسندگان

  • Felice C Simeone
  • Hyo Jae Yoon
  • Martin M Thuo
  • Jabulani R Barber
  • Barbara Smith
  • George M Whitesides
چکیده

Analysis of rates of tunneling across self-assembled monolayers (SAMs) of n-alkanethiolates SCn (with n = number of carbon atoms) incorporated in junctions having structure Ag(TS)-SAM//Ga2O3/EGaIn leads to a value for the injection tunnel current density J0 (i.e., the current flowing through an ideal junction with n = 0) of 10(3.6±0.3) A·cm(-2) (V = +0.5 V). This estimation of J0 does not involve an extrapolation in length, because it was possible to measure current densities across SAMs over the range of lengths n = 1-18. This value of J0 is estimated under the assumption that values of the geometrical contact area equal the values of the effective electrical contact area. Detailed experimental analysis, however, indicates that the roughness of the Ga2O3 layer, and that of the Ag(TS)-SAM, determine values of the effective electrical contact area that are ~10(-4) the corresponding values of the geometrical contact area. Conversion of the values of geometrical contact area into the corresponding values of effective electrical contact area results in J0(+0.5 V) = 10(7.6±0.8) A·cm(-2), which is compatible with values reported for junctions using top-electrodes of evaporated Au, and graphene, and also comparable with values of J0 estimated from tunneling through single molecules. For these EGaIn-based junctions, the value of the tunneling decay factor β (β = 0.75 ± 0.02 Å(-1); β = 0.92 ± 0.02 nC(-1)) falls within the consensus range across different types of junctions (β = 0.73-0.89 Å(-1); β = 0.9-1.1 nC(-1)). A comparison of the characteristics of conical Ga2O3/EGaIn tips with the characteristics of other top-electrodes suggests that the EGaIn-based electrodes provide a particularly attractive technology for physical-organic studies of charge transport across SAMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of SAM-Based Junctions with Ga2O3/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions

This paper compares the J(V) characteristics obtained for self-assembled monolayer (SAM)-based tunneling junctions with top electrodes of the liquid eutectic of gallium and indium (EGaIn) fabricated using two different procedures: (i) stabilizing the EGaIn electrode in PDMS microchannels and (ii) suspending the EGaIn electrode from the tip of a syringe. These two geometries of the EGaIn electro...

متن کامل

The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions

This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across selfassembled monolayer (SAM)-based large-area junctions of the form AgS(CH2)nM(CH2)mT//Ga2O3/EGaIn. Here Ag is a template-stripped silver substrate, -Mand -T are “middle” and “terminal” functional groups, and EGaIn is eutectic gallium−indium all...

متن کامل

Influence of the Contact Area on the Current Density across Molecular Tunneling Junctions Measured with EGaIn Top-Electrodes

This paper describes the relationship between the rates of charge transport (by tunneling) across self-assembled monolayers (SAMs) in a metal/SAM//Ga2O3/EGaIn junction and the geometric contact area (Ag) between the conical Ga2O3/ EGaIn top-electrode and the bottom-electrode. Measurements of current density, J(V), across SAMs of decanethiolate on silver demonstrate that J(V) increases with Ag w...

متن کامل

Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers

Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show t...

متن کامل

Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes.

This study describes that the current rectification ratio, R ≡ |J|(-2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 48  شماره 

صفحات  -

تاریخ انتشار 2013